MOS TECHNOIOGY INC.

NORRISTOWN, PA.

MCS6500
MICROPROCESSOR
SOFTWARE

SUPPORT

MOS TECHNOLOGY'S support software is now avail-
able on United Computing SYstems time-sharing
service. The package available provides online support
to assist: the microcomputer applications design engi-
neer or programmer in program development for the
MCSB50X microcomputer family.

TO USE MOS TECHNOLOGY SUPPORT SOFT-
WARE:

1. Contact your local USC sales representative
and request MOS TECHNOLOGY 'S MCS650X
Software System under user catalog number
M490. Also request the UCS System Guide
and the UNIEDIT manuals.

2. Order your copy of the MCS6500 Micropro-
cessor Hardware, Programming, Simulator,
And Cross Assembler manuals from:

MOS Technology Inc., 950 Rittenhouse Rd.,
Norristown, Pa. 19401

3. Dial the appropriate telephone number sup-
plied by your USC sales representative, sign
on with your terminal, and begin entering
your MCS650X microprocessor program.

THE SOFTWARE SUPPORT PACKAGE CONSISTS

OF:

—MOS/*** . A text file containing the latest bulletins
regarding MOS TECHNOLOGY Micro-
processor Software.

—ASM/*** . An interactive program which builds the
job control language required to submit
your source code to ASMB50X.

ASMB50X MCS650X Cross Assembler: the Cross
Assembler is a program which translates
a mnemonic or symbolic form of a com-
puter program to machine language.

—SIM/*** . An interactive program which builds the
job control language required to submit
your simulator command file to
SIMB50X.

~

)
JL —
-

—_—
—

\. = J \
r ~
—

SIMB50X - MCS650X Simulator. The simulator uses
the command file to simulate execution
of the machine language instructions
created by the cross assembler in the
MCS650X microprocessor.

—DMP/##%¥ . ROM dump program. This program
creates an output file of machine lan-
guage instructions in a format suitable
for MOS microcomputer loader pro-
grams.

The sample program shown in this brochure uses the
UCS time-sharing system to give the user an overview
of the procedure to be folloved for using MOS TECH-
NOLOGY'S support software.

In brief the procedure to be followed is:

1. Create a source file using the timesharing
editor and save the file.

2. Submit the source file to the Cross Assembler
by answering the questions asked by
-ASM/***

3. When the Cross Assembler run is completed
list the output file to obtain a listing of the
assembled program.

4. Create a file of simulator commands using
the time-sharing editor and save the file.

5. Submit the simulator command file and the
machine language file to the simulator by
answering the questions asked by -SIM/***.

6. When the simulator run is completed list the
output file to obtain the results of the pro-
gram simulation.

7. Obtain a ROM dump object tape by answer-
ing the questions asked by -DMP/***.

1. CREATE A SOURCE FILE.

1>pl> plpT63 Enter proper response so that computer can determine
your terminal’s speed.

ucs 11/19/75. £9.10.41. 1150

USER NUMBER: M490918,EXAMPLE For 10 CPS enter 763

SEHERALL For 15 CPS enter 863

MOS TECHNOLOGY 650X MICROPROCESSOR SOFTWARE. For 30 CPS enter T63

FOR THE LATEST INFORMATION TYPE -MOS/***

MERSAGE(S). BOKELETE Enter your user number and password to log on to
9.013 / 8.038 / 9 UCS system,

READY - FOR!

—Hos/w4* Indicates FORTRAN system is ready. (FORTRAN is

11/19/75. 09.11.22. automatically assigned.)

PROGRAM MOS
5 P . :
LAST UPDATED ON 11/19/75 Enter -MOS/ to obtain latest bulletins.

QULLETINS REGARDING THE MOS TECHNOLOGY MICROPROCESSOR
SOFTWARE WILL APPEAR FROM TIME TO TIME IN THIS MANNER.

'i'l) RUN THE 658X CROSS ASSEMBLER YOU MUST FIRST CREATE A
SOURCE FILE. THEN ENTER -ASM/*** TO SUBMIT YOUR SOURCE FILE

FOR BACKGROUND BATCH EXECUTION. " P’
f v o1 mxEcy Indicates the end of the bulletin.

TO RUN THE 658X SIMULATOR YOU MUST FIRST CREATE A SIMULATOR

COMMAND FILE AND A CROSS ASSEMBLER INTERFACE FILE. THEN TYPE - new file with file name “SAMP4"".

~SIM/**% TO SUBMIT YOUR COMMAND FILE FOR SIMULATION. Craars 4 S

THE 658X ROM DUMP PROGRAM WILL CREATE A REFORMATED FILE Auto line number assignnment.

SUITABLE FOR INPUT TO THE MOS MICCROCOMPUTER LOADER PROGRAMS.

YOU MUST HAVE CREATED AN INTERFACE FILE WITH THE CROSS Assembler directive to advance listing to top of page

. -] 650X/ ***
el B WL B S e R and title the page "MULTIPLE BYTE ADD".

THANK YOU.....MOS TECHNOLOGY

NEW, SANPE Semicolon indicates the start of a comment field.
READY - FOR!
att *= agsembler directive sets the program counter.

9016 .PAGE "MULTIPLE BYTE ADD"
@911@ ;ADDITION OF TWO MULTIPLE PRECTSION NUMBERS (BCD) P
80158 *=0 ALLOCATE A DATA AREA IN FIRST PAGE OF MACHINE Sets NB equal to 8.

90178 ADDR *=*+]
33;32 :3'3-.‘,.5 Reserves 8 bytes of memory for the label “PP".
80218 Q *=*+NB

223%3 ::iut:;??ss? BEGIN MAIN ROUTINE TO TEST SUB. BCD Start of progran.labeled “IMATN

80280 TXS INITIALIZE STACK POINTER . . Note that there is only one space between a line

#8298 LDX PP number and a label. There are two or more spaces

gggg: gg: ADDR between a line number and an instruction. Com-
8CD g

80320 NOP ments may begin one space after the operand.

80330 JMP *-1 END OF MAIN PGM

#0368 *=1@8 BEGIN SUBROUTINE

28379 BCD LDY #NB

80388 LDX ADDR LOADS DATA ADDRESS

28399 CLC

80488 SED

88418 NEXT LDA NB-1,X

28420 ADC 2*NB-1,X

g:ﬁg ﬁ:i I*NB-1,X i END assembler directive defines the end of the source
80458 DEY program.

80460 BNE NEXT END OF LOOP

g:;g S Hitting the “ESC” key ends the auto line number
89498 ABCDEFGH NOP THIS IS AN INTENTIONAL ERROR. /assignment. The system replies "“*DEL*".

80588 .END

3533;“ bl SAVE is the command to save the new file just creat-
READY. ed

2. SUBMIT TO CROSS ASSEMBLER.

—ASH/Ren

MOS TECHNOLOGY 650X CROSS ASSEMBLER SUBMITTOR \ ! A
~ASM/*** invokes the cross assembler submittor

DO YOU WANT INSTRUCTIONS (YES OR NO) -- ? NO Softmre-

ENTER USERNUM,PASSWORD, AND PID (IF NEEDED) == ? M49201@,EXAMPLE

DO YOU WANT TO CHANGE THE PRIORITY -- 7 NO — " o
SOURCE file is the file containing the source code to

ENTER SOURCE FILE NAME == ? SAMP4 be assembled.
P ol - 2 ¥ES - : z A
SG‘{?R gﬂ%iﬂi pﬁti .SZii o8 "2’mm ke QUTPUT file will contain the assembler listing.
:;;gu ﬁgg:;‘:g: :H:g "‘:ii OR “‘7”1;;‘ ? YES INTERFACE file will contain the ohject code, line
number and label information required by the sim-
SAVE ERROR FILE (YES OR NO) -- 7?7 ¥ES ulator.
ENTER ERROR FILE NAME -- ? ERR4

ERROR file will contain 2 listing of any errors that

DAYFILE FILE (YES OR NO) =- ? YES "
? DAY4 occur during the assembly.

SAVE
ENTER DAYFILE FILE NAME =--

b FILE NANBe= & 1COR: DAY file is a history of steps taken by the UCS

TO RUN ASSEMBLER TYPE -- system in running your job.

OLD,CON4

e (0R 788) CONTROL file is the file of JCL built by -ASM/***
to run your assembly.

STOP.

OLD,CON4 i the LUCS svst

READY = EXE! Submits assembly job to the UCS system.

RIE

Indicates that the job has been submitted under the

11/19/75. 89.15.45. s o u
PROGRAM CON4 /1oh name “RJEDZQM

RJE COMPLETE,ID = RJEDZQM

3. lIST OUTPUT FILE

OLD,0UT4

READY - EXE!
L1S ’

11/19/75. ld9 18.14.

PROGRAM OU

+ MULTIPLE BYTE ADD PAGE 1
ULINE LOC, CODE. QUKCE
11— ;ADDITION OF TWO MULTIPLE PRECISION NUMBERS (BCD)
158 ee0e *=9 ALLOCATE A DATA AREA IN FIRST PAGE OF MACHINE
1790 d@0d ADDR *a*4]
199 NB=8
208 ¢edl PP *=*4NB
218 eeey 0 *=*+NB
220 0@l T~ RES *=*+NB
278 8819 A2 8F MAIN LDX #S8F BEGIN MAIN ROUTINE TO TEST SUB. BCD.
280 9E1B 9A TXS INITIALIZE STACK POINTER
299 0¢1C A2 el LDX #PP
369 BE1E B6 80 STX ADDR
319 @@2¢ 20 64 @0 JSR BCD
320 @23 EA NOP
338 0824 4C 23 89 JMP *-1 END OF MAIN PGM
360 0827 *=100 BEGIN SUBROUTINE
370 0864 AE 0B 8CD LDY §NB
388 0066 A6 8P LDX ADDR LOADS DATA ADDRESS
398 0068 18 cLe
480 0069 F8
412 @86A BS 87 NEXT LDA NB-1,X
428 806C 75 BF ADC 2*NB-1,X
439 @46E 95 17 STA 3*NB-1,X%
442 9072 CA DEX
453 ¢e71 B8 DEY
468 @072 D@ F6 BNE NEXT END OF LOOP
478 0874 D8 cLD

S
492 9876 EA EA EA ABCDEFGH NOP THIS IS AN INTENTIONAL ERROR.
#44¢s ERROR ** LABEL GREATER THAN SIX CHARACTERS - NEAR COLUMN 1
580 <END

END OF H.DS/TECHNOLOGY 658X ASSEMBLY VERSION 4

NUMBER OF ERRORS 1, NUMBER OF WARNINGS = @
1 SYMBOL TABLE
SYMBOL VALUE LINE DEFINED CROSS-REFERENCES
ADDR aeee 178 3@ 38¢
BCD 0864 378 318
MAIN @819 A8 mERE
NG 2808 199 280 21@ 220 372 418 428 430
NEXT 2e6A ale 460
PP 8epl [} 298
Q aee9 219, “AEAN
RES @811 229, tRax
RUN COMPLETE.
4. CREATE SIMULATOR COMMANDS
NEW,ECSAMP1
READY - FOR!
AUTO
@019 SM 1 1 23456 78
98114 SMH 98 76 54 321
08120 DUMP 1 S18

99130 TRACE 8 SFFFF
98140 DO MAIN NEXT 3 .TIMES
98150 DUMP 1 S18

98168 EXIT

8@l7@ *DEL*

5. SUBMIT TO SIMULATOR

~SIH /%

MOS TECHNOLOGY 658X SIMULATOR SUBMITTOR

DO YOU WANT INSTRUCTIONS (YES OR NO) -- ? NO
ENTER USERNUM, PASSWORD, AND PID (IF NEEDED) -- ? M498081@,EXAMPLE
DO YOU WANT TO CHANGE THE PRIORITY =-- ? NO

ENTER COMMAND FILE NAME -- ? ECSAMPI
ENTER INTERFACE FILE NAME -- 2 INT4

SAVE OUTPUT FILE (YES OR NO) -- 7 YES
ENTER OUTPUT FILE NAME =-- ? EOUT4

SAVE DAYFILE FILE (YES OR NQ) =-- ? YES
ENTER DAYFILE FILE NAME =-- ? EDAY4

ENTER CONTROL FILE NAME =- 2 ECON4

TO RUN SIMULATOR TYPE --
OLD,ECON4
RJE (OR RBE)

STOP.

OLD,ECON4
READY - EXE!
RJE

11/19/75. 99.23.56.
PROGRAM ECON4

RJE COMPLETE,ID = RJEDZRY

Terminal input to list the output file “OUT4".
Title created by +PAGE assembler directive.

Program counter. (Hexadecimal)

Hexadecimal instruction, data, or value.

Program counter set to hexadecimal 64 by assembler
directive *=100.

Error line will also appear in the ERROR file.

The version number is changed as improvements are
made to the Cross Assembler.

Note: For more detailed information refer to the
MCS6500 Microprocessor Programming and
Cross Assembler manuals.

Create simulator command file called “ECSAMP1".

Starting at location 1 set consecutive memory loca-
tions to the specified values.

Dump the contents of memory from decimal 1 to
hexadecimal 18.

Trace every instruction executed.

Begin simulated execution at label “MAIN" and con-
tinue wuntil instruction at label “NEXT" has been
executed 3 times.

EXIT terminates simulator run,

~SIM/*** invokes the simulator submittor software.

COMMAND file is the file containing the simulator
conmmands.

INTERFACE file is the interface file created by the
cross assembler,

6. LIST SIMULATOR OUTPUT

OLD, EOUT4 1
READY - FOR!
LIST

11/19/75.
PROGRAM

#9.26.65.
EOUT4

l4++++++ MOS TECHNOLOGY 658X MICROPROCESSOR SIMULATOR +++++

00109 SM 1 1 2 3456 78
0110 SM 9 8 7 6 54 3 21
9129 DUMP 1 $18
CONTENTS OF MEMORY LOCATION AT BASE ADDRESS PLUS........

BASE ADDRESS +0 41 42 o+ +4 45 46 +7 +8 +9 +A +B +C +D +E +F
DUMP ADDR=08002 80 921 @2 93 ¥4 85 @6 07 @8 @8 ©7 06 85 04 ©3 02
DUMP ADDR=0010 Bl @0 82 ©0¢ Qv 80 @9 A3 ¥d A2 B8F 9A A2 @1 B6 0@
©@130 TRACE @ SFFFF
98148 DO MAIN NEXT 3 .TIMES

IA LABEL OPCODE A S X Y P STATUS pC EA EO ICNT TCNT 65601 TIME
TBO19 MAIN LDX A2 20 00 8F 00 98 N B 0018 881A 8F 1 2 .
TO#1B TXS 9A 6@ 8F 8F 90 98 N B 991C 001B 088 2 4 0.
T1C LDX A2 90 8F 91 @8 19 3 8@1E 001D 01 3 6 0.
TBO1E STX 86 89 8F 01 00 10 B 0020 pooR 01 4 9 8.
TOV20 JSR 20 00 8D €1 89 1¢ B 2064 0064 08 5 15 0.
TOB64 BCD LDY A@ 6@ 8D 01 08 1@ B 0066 665 08 6 17 0. I
TOB66 LDX A6 08 8D @1 08 198 8 0968 2000 21 2 28 e.
TOO68 CLC 18 29 8D 01 08 10 B 0869 0068 00 8 22 e.
T0O69 SED F8 88 8D 81 88 18 BD B06A 0069 00 9 24 8.
TOB6A NEXT LDA B5 @8 8D @1 @8 18 BD A86C 0008 88 10 28 2.
TAOEC ADC 75 29 8D 01 98 18 BD 086E €91€ 21 11 32 2.
TOO6E STA 95 @9 8D @1 08 18 BD @e7¢ eels 89 12 36 9.
TOB70 DEX CA @9 8D 90 98 1A BD Z 0071 0070 @0 13 38 8.
TO871 DEY 88 99 8D @@ 87 18 BD 8972 0071 @0 14 40 e.
T@872 BNE DO 89 8D 09 87 18 BD @06A 006A B0 15 43 [
T@B6A NEXT LDA B5 87 8D 88 87 18 BD 006C 0607 27 16 47 8.
TAB6C ADC 75 29 8D 8@ 07 18 BD BO6E @OOF 02 17 51 8.
TeB6E STA 95 89 8D @€ @7 18 BD 9070 0017 89 18 55 e.
TE870 DEX CA @9 BD FF 27 98 N BD ¢e71 00708 8@ 19 5, 0.
TB871 DEY 88 89 BD FF 66 18 BD 8072 2071 @8 20 59 0.
T8B72 BNE D@ 09 8D FF 06 18 8D BO6A 006A 080 21 62 D,/
EMUL MONITOR DETECTED A WARNI ZERO WRAP-

TOO6A NEXT LDA B5 86 8D FF 86 18 BD 996C 8206 06 22 66 2.
+HILEV+ BREAKPOINT-NORMAL DO SEQUENCE
89152 DUMP 1 $18

CONTENTS OF MEMORY LOCATION AT BASE ADDRESS PLUS........

BASE ADDRESS +8 +1 +2 43 +4 45 +6 47 +8 +9 +A +B +C +D +E +F
DUMP ADDR=08800 8l @1 €2 @83 e4 85 06 @7 @8 08 87 66 -85 04 03 @2
DUMP ADDR=001¢ 01 99 @@ @@ ee¢ 00 ©6 €9 09 A2 8F 9A A2 @1 86 09
00160 EXIT
STOP.

RUN COMPLETE.

7. PUNCH OBJECT TAPE

~DMP/***.

MOS TECHNOLOGY =-- ROM DUMP

ENTER INTERFACE FILENAME ? INT4
ENTER OBJECT FILE NAME FOR OUTPUT --

? 0BJ4

08J4 CONTAINS OBJECT OUTPUT
STOP.
9.135 / 0.809 / 18
OLD,0BJ4 .
READY - EXE!
PUNCH

;OE@D19A28F9IAA2018600206400EA4C230004F8
;108064AB0BA60018FBB507750F9517CABBDOF607D6
3050074DB6DEAEAEARAGF

10200030003
BYE
CT=08:20
M490010 LOG OFF. €9.30.38.

Terminal commands required to list the Simulator out-
put file.

Output generated as a result of the DUMP command.

Trace output generated during execution of the DO
sequence.

A warning to the user that his program execution
caused an index register to wrap around from hexa-
decimal FF to OO. This may not have been planned.

Indicates normal DO sequence termination.

For more detailed information refer to
the MCS6500 Simulator manual.

Note:

—DMP/*** invokes the ROM dump program.
INTERFACE file is the file created by the cross
assembler,

OBJECT file is the file name the object code is to be
saved in.

Terminal commands required to list and punch the
object tape.
Note: The paper tape punch should be turned

on after the carriage return is entered.

Sign-off the system by entering “BYE"

MCS6500
MICROPROCESSOR
LANGUAGE

ADDRESSING MODES

ACCUMULATOR ADDRESSING
This form of addressing is represented with a one byte
instruction, implying an operation on the accumulator

IMMEDIATE ADDRESSING
In immediate addressing, the operand is contained in the
second byte of the instruction, with no further memory
addressing required.

ABSOLUTE ADDRESSING
In absolute addressing, the second byte of the instruction
specifies the eight low order bits of the effective address
while the third byte specifies the eight high order bits.
Thus, the absolute addressing mode allows access to the
entire 65K bytes of addressable memory.

ZERO PAGE ADDRESSING
The zero page instructions allow for shorter code and
execution times by only fetching the second byte of the
instruction and assuming a zero high address byte. Careful

INSTRUCTION SET

EXECUTION TIMES
(IN CLOCK CYCLES)

Add Memory to Accumulator with Carry H
“AND"* Memary with Accumulator R RS H
Shift Left One Bit (Memory or Accumulator) L O e x> =
LR 3 5 I e
Branch on Carry Clear S L EEERE g8
Branch on Carry Set 2EQS o928 R 3222339 2
Branch on Result Zero $ESESE23EGZZE3
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero ADC 234 4 arar 6 5
8ranch on Result Plus AND 253154 8. 48674 6 §
Force Break ASL 2. 66.67
BCC
Branch on Overflow Clear BGS
Branch on Overflow Set BEQ
Clear Carry Flag BIT 3 4
Clear Decimal Mode 8MI
Clear Interrupt Disable Bit BNE
Clear Overflow Flag 8PL
Compare Memory and Accumulator BRK "
Compare Memory and Index X ng g
Compare Memory and Index Y oo 5
Decrement Memory by One Lo 2
Decrement Index X by One our 2
Decrement Index Y by One. cLv y 2
“Exclusive-or”” Memory with Accumulator cmp 234 . 4a4a 6 5
Increment Memory by One cPX 23 4
Increment X by One cpPy 23 4
Increment Y by One DEC §6 .67
Jump to New Location e 2
Jump 10 New Location Saving Return Address EOR 33 4. 4 avar s
Load Accumulator with Memory INC 56 67
Load Index X with Memory INX . 2
Load Index Y with Memory INY 2
Shift One Bit Right (Memory or Accumulator) P 3 5
JSR e .
No Operation toa T o g6
“OR" Memory with Accumulator toy AN AR
Push Accumulator on Stack R 2 S se. 87
Push Processor Status on Stack NOP 2
Pull Accumulator from Stack ORA 234 a4 aa & &
Pull Processor Status from Stack PHA 3
Rotate One Bit Left (Memory or Accumulator) PHP 3
PLA a
Return From Interrupt PLP 4
Return From Subroutine L2 i ey
Subtract Memory from Accumulator with Borrow RTS 6
SetCanty e s8C 234 444 6 5
Set Decimal Mode SEC 2
Set Interrupt Disable Status SED 2
Store Accumulator in Memory SEI 2
Store Index X in Memory STA 34.455 66
Store Index Y in Memory STX* 3 454
Transfer Accumulator to Index X STVES SRAR S 5
Transfer Accumulator to Index Y L 3
Transfer Stack Pointer to Index X TSX H
Transfer Index X to Accumulator TXA 2
Transfer Index X to Stack Pointer TXS 2
Transfer Index Y to Accumulator TYA 2
Add one cycle f indexing across page boundary
“+ Add one cycle if branch is taken, Add one additional

W branching operation crosses page boundary

use of the zero page can result in significant increase in
code efficiency.

INDEXED ZERO PAGE ADDRESSING — (X, Y indexing)
This form of addressing is used in conjunction with the
index register and is referred to as ““Zero Page, X" or
“Zero Page, Y. The effective address is calculated by
adding the second byte to the contents of the index
register. Since this is a form of “'Zero Page’’ addressing, the
content of the second byte references a location in page
zero. Additionally due to the “Zero Page” addressing
nature of this mode, no carry is added to the high order 8
bits of memory and crossing of page boundaries does not
oceur.

INDEXED ABSOLUTE ADDRESSING — (X, Y, indexing)
This form of addressing is used in conjunction with X and
Y index register and is referred to as “‘Absolute, X", and
“Absolute, Y. The effective address is formed by adding
the contents of X or Y to the address contained in the
second and third bytes of the instruction. This mode
allows the index register to contain the index or count
value and the instruction to contain the base address. This
type of indexing allows any location referencing and the
index to modify multiple fields resulting in reduced coding
and execution time.

IMPLIED ADDRESSING
In the implied addressing mode the address containing the
operand is implicitly stated in the operation code of the
instruction

RELATIVE ADDRESSING
Relative addressing is used only with

branch instructions
and a for the di | bran:

anch

The second byte of the instruction becomes the operand
which is an ""Offset’ added to the contents of the lower
eight bits of the program counter when the counter is set
at the next instruction. The range of the offset is -128 to
+127 bytes from the next instruction

iNDEXED iNDIRECT ADDRESSING
In indexed indirect addressing (referred to as (Indirect,
X)), the second byte of the instruction is added to the
contents of the X index register, discarding the carry. The
result of this addition points to a memory location on page
zero whose contents is the low order eight bits of the
effective address. The next memory location in page zero
contains the high order eight bits of the effective address
Both memory locations specifying the high and low order
bytes of the effective address must be in page zero

INDIRECT INDEXED ADDRESSING
In indirect indexed addressing (referred to as (Indirect),
Y), the second byte of the instruction points to a memory
location in page zero. The contents of this memory
location is added to the contents of the Y index register,
the result being the low order eight bits of the effective
address. The carry from this addition is added to the
contents of the next page zero memory location, the result
being the high order eight bits of the effective address.

ABSOLUTE INDIRECT
The second byte of the instruction contains the low order
eight bits of a memory location. The high order eight bits
of that memory location is contained in the third byte of
the instruction. The contents of the fully specified
memory location is the low order byte of the effective
address. The next memory location contains the high order
byte of the effective address which is loaded into the
sixteen bits of the program counter

ASSEMBLER DIRECTIVES

.OPT — If used must be the first executable statement in the

program.
LOPTIONS ARE: — (Options listed are the default value.)
COUNT (COU or CNT) - List all instructions and their
usage.

- Do not generate more than
one line of code for ASCII
strings.

- Produce a cross-reference list
in the symbol table.

- Create an error file.

- Create an assembler object
output file.

NOGENERATE (NOG)

XREF (XRE)

ERRORS (ERR)
MEMORY (MEM)

LIST (LIS)
.BYTE — Produces a single BYTE in memory equal to each
operand specified.

WORD — Produces two BYTES in memory equal to each
operand specified.

S Defines the beginning of a new program counter
sequence.

PAGE — Advances the listing to the top of a new page.
.END — Defines the end of a source program.

- Produce a full assembly listing.

Labels
instruc

Labels

LABELS:

begin in column 1 and are separated from the
tion by at least one space.

can be up to 6 alphanumenic characters long and

must begin with an alpha character.

A, X,Y,S, and P are reserved and cannot be used as labels.

LABEL

Expression can be used to equate labels to

instructions.

LABEL *

= * + N can be used to reserve areas in memory.

CHARACTERS USED AS SPECIAL PREFIXES:

TRV

0

Indicates an assembler directive.

Specifies the immediate mode of addressing.
Specifies a hexadecimal character.

Specifies an octal number.

Specifies a binary number.

Specifies an ASCII literal character.
Indicates i

direct addressing.

; Incolumn 1 indicates a comment.

ATLANTA

Bldg. 1, Suite 106

5825 Glenridge Drive N.E.
Atlanta, Georgia 30328
Phone: (404) 256-3610

BOSTON

Fourth Floer

1050 Massachusetts Avenue
Cambridge, Massachusetts 02138
Phone: (617) 661-1720

CALGARY

Suite 1910

Bow Valley Square 2

P. 0. Box 9235

Calgary, Alberta, Canada T2P2W5
Phone: (403) 2654926

CHICAGO

Suite 1016

150 North Wacker Drive
Chicago, llinois 60606

Phone: (312) 782-0865

CLEVELAND*

Two Commerce Park Square
23200 Chagrin Blvd.
Beachwood, Ohio 44122
Phone: (216) 464-9205

COLUMBUS*
P. O. Box 781
Delaware, Ohic 43015
Phare: (614) 548-6371

DALLAS

Suite 1112, Twin Towers South
8585 Stemmons Freeway
Dallas, Texas 75247

Phone: (214) 638-8260

DENVER
Suite 20C
2460 West 26th Avenue
Denver, Colerado 80211
Phone: (303) 458-8001

EAST ORANGE

33 Evergreen Place

East Orange, New Jersey 07018
Phone: (201) 677-2400

FT. WAYNE

Suite 101

3702 Rupp Drive

Fort Wayne, Indiana 46805
Phone: (219) 484-8522

FT. WORTH
Phone: (214) 263-0584
(Dallas office)

UCS SALES OFFICES

HOUSTON

4544 Post Oak Place
Suite 346

Houston, Texas 77027
Phone: (713) 622-5351

KANSAS CITY

500 W. 26th Street

Kansas City, Missouri 64108
Phone: (816) 221-9700

LOS ANGELES*

Suite 410

101 Continental Boulevard
El Segundo, California 90245
Phone: (213) 640-0891

MILWAUKEE

Suite 107

10701 West North Avenue
Wauwatosa, Wisconsin 53226
Phone: (414) 475-9392

NEW HAVEN

35 Worth Avenue

Hamden, Connecticut 06518
Phone: (203) 2886287

NEW YORK

Suite 1847

Two Pennsylvania Plaza
New York, New York 10001
Phone: (212) 868-7785

OKLAHOMA CITY

Swite 252

Northwest Office Center

4334 N.W. Expressway
Oklzhoma City, Oklahoma 73116
Phone: (405) 843-9784

ORLANDO

Suite 149

7200 Lake Elenor Drive
Orlando, Florida 32809
Phone: (305) 855-1810

PALO ALTO*

Sujte 217

1032 Elwell Court

Palo Alto. California 94303
Phone: (415) 964-6990

PHILADELPHIA
Suite 210
500 Office Center

Ft. Washington, Pennsylvania 19034

Phone: (215) 542-8600

PHOENIX

Suite 104

5350 N. 16th St.
Phoenix, Arizona 85016
Phone: (602) 248-9176

SANTA ANA*

Suite 212

1651 East Fourth

Santa Ana, California 92701
Phone: (714) 835-3801

SAN FRANCISCO*

Suite 222

681 Market Street

San Francisco, California 94105
Phone: (415) 777-1885

SEATTLE

Suvite B

Koll Commerce Center

699 Strander Blvd.
Tukwila, Washington 98188
Phone: (206) 243-8041

ST. LOUIS

Suite 100

7750 Clayton Road
Clayton, Missouri 63117
Phone: (314) 781-0123

TAMPA

Suite 518

1000 Ashley Drive
Tampa, Florida 33602
Phone: (813) 223-3921

TULSA

Suite 403

16 East 16 Street
Tulsa, Oklahoma 74119
Phone: (918) 582-72%1

WASHINGTON, D.C.

Suite 319

7115 Leesburg Pike

Falls Church, Virginia 22043
Phone: (703) 532-1551

NATIONAL DATA CENTER
2525 Washington

Kansas City, Missouri 64108
Phone: (816) 221-9700

CORPORATE OFFICES
2525 Washington

Kznsas City, Missouri 64108
Phone: (816) 221-9700

e R

HEADQUARTERS —

MOS TECHNOLOGY, INC, 950 Rittenhouse Road

Norristown, Pa, 19401, (215) 6667950, TWX: 510/660/4033

EASTERN REGION — -
Mr. William Whitehead
MGS TECHNOLOGY, INC., Suite 312,
410 Jericho Turnpike, Jericho, N.Y. 11753 _
(516) 822.4240

WESTERN REGION —
MOS TECHNOLOGY, INC. 2172 Dupont Drive, -
Patio Bldg., Suite 221 Newport Beach, CA. 92660

' MOS TECHNOIOGY INC.

Mr. Petr Sehnal, Regional Applications Mgr

MOS TECHNOLOGY, INC., 22300 Foothill Bivd., Suite 311
Hayward, CA 84541

(415) 881-8080

